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ABSTRACT 
 
 
 
This thesis presents the design of two circularly polarized patch antennas for 

operation at 1.767 GHz and at 2.207 GHz (for receiving and transmitting, respectively) 

on NPSAT1 satellite.  The design requirements for the antennas include a VSWR of less 

than or equal to 2:1 for 50 Ω  reference impedance. The study includes of the 

development of a three-dimensional antenna model, antenna simulation, and analysis of 

results based on various outputs of the CST Microwave Studio Finite Difference Time 

Domain (FDTD) software package. 
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EXECUTIVE SUMMARY 
 

 
The aim of this research is to design a narrow-band antenna for the NPSAT1 

space system, by using the CST Microwave Studio Finite Difference Time Domain 

(FDTD) software to develop, test, and analyze the RF propagation characteristics of the 

“elliptical patch” antenna and to determine the parameters that will give optimal results. 

The FDTD method uses approximate differential operators in Maxwell’s equations. The 

most commonly used solution methods in the time domain are physical optics and the 

finite difference methods. 

This thesis presents the design of two circularly polarized patch antennas for 

operation at 1.767 GHz and at 2.207 GHz, for receiving and transmitting, respectively. 

Additional design requirements for the NPSAT1 satellite antennas include a Voltage 

Standing Wave Ratio (VSWR) of less than or equal to 2:1 and 50 Ω input impedance. 

The study will also develop a three-dimensional antenna model that will be installed on 

the NPSAT1, whose main objective is to enhance the education of officer students at 

NPS.  

The elliptical patch antenna is chosen for both the receive and transmit antenna, 

because of several advantages: it is lightweight, has small volume, has low profile planar 

configuration and has low fabrication cost. However, this approach has some disadvan-

tages, such as narrow bandwidth, half plane radiation and a limitation on the maximum 

gain.  

The polarization properties of an antenna should be matched to the fields radiated 

or received. The polarization of a receiving antenna must be matched to the polarization 

of the transmit antenna in order to extract maximum power from the field. If the antenna 

polarization is perpendicular to the received field polarization (such as vertical vs. hori-

zontal, or right hand vs. left hand circular) the antenna will extract zero power.  

Circularly polarized microstrip antennas (CP-MSAs) have recently received much 

attention and are used as efficient radiators in many communication systems. Therefore, 

in order to get the best performance regardless of the position of the NPSAT1, circular 



 xvi

polarization is chosen for this design.  By properly adjusting the location of the single 

probe feed, one can create an elliptical patch antenna with good circular polarization. 

The design process included the electromagnetic modeling and simulation, i.e., 

obtaining port signals, the S-Parameter plots, and the farfield pattern plots from the CST 

Microwave Studio FDTD software. The results of the simulation validated the initial 

design concept.  

Through such simulation, the values of the axial ratio (representing the polari-

zation quality for a circular polarized antenna) are found to be close enough to the 1.0 

ideal value to ensure a good circular polarization. The VSWR of 2:1 is achieved from 

1.5881 GHz to 1.7759 (187 MHz bandwidth) for the receive antenna, and from 2.038 

GHz to 2.349 (310 MHz bandwidth) for the transmit antenna, thus meeting the require-

ments of the NPSAT1.  

The performance of the proposed designs (in terms of input impedance and 

radiation patterns) does not change appreciably throughout the operating band. The 

maximum gain of the receive antenna is around 8.6 dBi with a side-lobe suppression of 

11.6 dBi. For the transmit antenna the maximum gain is about 8.8 dBi with a side-lobe 

suppression of 15.7 dBi. 

In conclusion, the simulations results presented in this study show that the 

proposed receive and transmit antennas are suitable for implementation as low cost, 

mechanically stable antennas with good circular polarization that satisfy the requirements 

of the NPSAT1. 

Another student, Ltjg. Ilhan Gokben of the Turkish Navy, will use the optimized 

design resulting from this thesis to prototype and test the antennas that will eventually be 

installed on the NPSAT1. 
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I. INTRODUCTION  

A. STATEMENT OF THE PROBLEM  

1. Background 

The primary goal for a microstrip patch antenna design is to determine the 

substrate and patch dimensions necessary to satisfy the required performance charac-

teristics over the specified frequency band. The design procedure is initiated for the 

resonant frequency and the required radiation performance over the operational band-

width via a step-by-step design process, as follows: Once the thickness and dielectric 

constant of the substrate have been chosen, based on material availability and require-

ments for space use, the approximate dimensions of a patch antenna are determined from 

the desired operating frequency and the known velocity of electromagnetic wave propa-

gation in the patch substrate. The initial dimensions are then fine-tuned by an iterative 

procedure using computational electromagnetic software, preferably with a built-in 

optimizer, such as CST Microwave Studio.  The design procedure is completed by 

finding a location of the feed point, such that the input impedance match to a 50 Ω 

reference yields a VSWR of less than or equal to 2:1. 

The restrictions on antenna dimensions based on the available antenna “real-

estate” on the NPSAT1 are for efficient operation at a VSWR specification of less than 

2:1, and the 22-watt power handling capacity. These restrictions combine to limit the 

possible options to the use of microstrip patch antennas. This complicated problem would 

be very difficult to analyze and solve without using of computational electromagnetic 

tools (i.e., CAD software) and high-performance computer hardware.  

2. Problem 

This research addresses the following questions: (a) given the constraints on 

VSWR, bandwidth, physical dimensions and power handling capacity, what is the best 

antenna configuration to obtain optimal performance? and (b) what is the best available 

material to provide physical strength, while simultaneously satisfying the antenna VSWR 

requirements?  



 2

 

B. SCOPE AND LIMITATIONS 

1. Scope 

This study focuses on how to design one patch antenna for the receiver frequency 

of 1.767 GHz, and another for the transmit frequency of 2.207 GHz with a VSWR of less 

than or equal to 2:1 for a 50 Ω reference impedance. The study also includes: (a) the 

development of a three-dimensional antenna model for installation on the NPSAT1, (b) 

simulation of the RF excitation of the antenna and (c) analysis of the radiation patterns 

and the input impedance from the CST Microwave Studio Finite Difference Time 

Domain (FDTD) software package.   

2. Limitations 

This thesis will not cover the construction/fabrication of a prototype antenna. This 

research will not address the comparison of the measured results for antenna input impe-

dances and radiation patterns with the predicted performance of the elliptical microstrip 

patch antenna models. 

Ltjg. Ilhan Gokben of the Turkish Navy will use the optimized design resulting 

from this thesis to implement the prototype and test the antennas that will be installed on 

the NPSAT1.  

C. OBJECTIVES OF THE STUDY 

The objective of this thesis is to design two circularly polarized patch antennas for 

operation at 1.767 GHz and at 2.207 GHz, for receiving and transmitting respectively. 

Additional design requirements for the NPSAT1 satellite antennas include a VSWR of 

less than or equal to 2:1 and 50 Ω input impedance. 

To accomplish the thesis objective, the CST Microwave Studio Finite Difference 

Time Domain (FDTD) software was used to develop, test, and analyze the RF charac-

teristics of the elliptical microstrip patch antenna and to determine the antenna parameters 

for optimal performance. The basic geometry of a microstrip patch antenna consists of a 

conducting radiator patch printed onto a grounded substrate. Microstrip patch antennas 

make efficient radiators and are widely used in antenna applications. 
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D. BENEFIT OF THE STUDY 

The study provides designs for low-profile receive and transmit patch antenna to 

be used aboard the NPSAT1.  These designs will be implemented and tested in practice 

by Ltjg. Ilhan Gokben. 

E. GENERAL BACKGROUND OF THE NPSAT1 

1. Mission Objectives 

A primary object of the NPSAT1 endeavor is to enhance the education of officer 

students at NPS. By providing hands-on engineering experience for an actual space 

system, officer students are exposed to the realities of systems engineering and the 

processes inherent in the flow from initial requirements to flight operations. From the 

standpoint of education, the spacecraft is a product of the educational process. The 

satellite itself will provide a test bed to demonstrate the technology of commercial, off-

the-shelf (COTS) components for space applications. Furthermore it will provide an 

experimental platform for various scientific experiments. 

2. Spacecraft Description 

The NPSAT1 is an 81.6 kg [180 lb] satellite commissioned by the Department of 

Defense (DOD) Space Test Program (STP) MLV-05 Delta IV mission, due to launch in 

January 2006. The NPSAT1 is one of five secondary payloads that will participate in the 

Delta IV mission, using the Evolved Expendable Launch Vehicle (EELV) Secondary 

Payload Adapter (ESPA) 4. Figure 1 shows an expanded assembly drawing of the space-

craft, depicting modules located within the spacecraft. The overall configuration is shown 

in Figure 2, with the top, side, bottom, and isometric views shown. The spacecraft is a 

12-sided cylinder with body-mounted solar cells on all of the cylinder sides. Both ends of 

the cylinder have antennas mounted on them to allow for communication in the event that 

the attitude of the spacecraft is not correctly nadir-pointing. This configuration assumes 

the risk, though remote, of an attitude control subsystem failure, combined with an 

attitude such that the cylinder’s longitudinal axis points at the sun in either the plus or 

minus sense for an extended period of time, resulting in the loss of solar panel illumi-

nation. Two deployable booms are shown in Figure 2. These are the CERTO beacon 
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antennas and the Langmuir probe boom, respectively. The spacecraft subsystems include 

the Command and Data Handling (C&DH) subsystem, Electrical Power Subsystem 

(EPS), Attitude Control Subsystem (ACS), Radio Frequency Subsystem (RFS), and 

mechanical subsystems, which include the spacecraft structure, mechanisms, and thermal 

design. As a low-cost satellite, few space-rated components will be used, and the system 

will be a “single-string” design. The spacecraft’s circular orbit with an altitude of 560 km 

and 35.4° inclination suggests a relatively radiation-benign environment. 

As a result, the NPSAT1 has been designed, developed and integrated and will be 

tested completely at NPS facilities. Figure 3 shows the NPSAT1 existing structure and 

solar panels. After launch, it will be completely controlled by the NPS command station. 

NPSAT1 has been planned as a two-year mission life (minimum) and low-cost design    

(< $1M hardware cost) satellite. It will orbit the Earth at a height of 50-800 km, in a 

circular orbit with 30o to 80o inclinations. Some of the communication and physical 

features of the NPSAT1 are shown below: 

• GMSK Modulation 

• Full Duplex 

• 100 kbps data rate 

• Uplink at 1.767 GHz and Downlink at 2.207 GHz, 

• Overall dimensions: 93 cm (37 in.) height x 50 cm (20 in.) diameter  
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Figure 1.   NPSAT1 Existing Structure and Solar Panels 
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Figure 2.   NPSAT1 Expanded View [From NPSAT1 Design Team.] 
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This thesis consists of five chapters. Chapter I introduces the research problem, 

the design of the receive and transmit patch antennas with a VSWR of less than or equal 

to 2:1 for a 50 Ω reference impedance, and presents some background information about 

the NPSAT1.  

Chapter II briefly defines antenna polarization and shows how a microstrip anten-

na produces a circularly polarized (CP) wave. 

Chapter III examines some of the most popular design techniques, particularly the 

FDTD method implemented in CST Microwave Studio, the computational electromagne-

tics software used in this study. This chapter also describes the procedure for choosing 

the structures and the dimensions of the proposed antenna. 

Chapter IV presents the electromagnetic simulation results, i.e., port signals, 

S−parameter plots, and farfield patterns produced by CST Microwave Studio simulations 

to validate the patch antenna designs. 

Finally, Chapter V presents conclusions and recommendations for possible 

continuation of this research. 
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II. CIRCULARLY POLARIZED MICROSTRIP PATCH 
ANTENNAS 

This Chapter briefly explains the definition of antenna polarization and 

demonstrates how a microstrip antenna produces a circularly polarized (CP) wave. 

A. DEFINITION OF POLARIZATION 

First the issue of antenna polarization is considered. At a large distance from a 

radiating antenna, the electric field vector of the radiated field is perpendicular to the 

direction of propagation. The polarization of an electromagnetic field is defined in terms 

of the direction of its electric field vector. If the electric field vector is always in one 

plane, then it is said to be linearly-polarized. Special cases are vertical polarization for the 

electric field vector in a vertical plane, and horizontal polarization for the electric field 

vector in a horizontal plane (typically with reference to the surface of the earth). 

In general, the electric field vector rotates about a line parallel to the direction of 

propagation and its tip traces out an ellipse. This is known as elliptical polarization. Cir-

cular polarization (CP) is a special case of elliptical polarization in which the trace of the 

electric field vector is a circle. Because the electric field vector travels as a wave, the 

actual pattern is that of a spiral with an elliptical or circular cross section. The polari-

zation of the receiving antenna must be matched to the polarization of the transmit anten-

na in order to extract maximum power from the field. If the antenna polarization is per-

pendicular to the field polarization (such as vertical vs. horizontal or right hand vs. left 

hand circular) the antenna will not extract any power from the incident wave.     

B. CIRCULAR POLARIZATION FOR PATCH ANTENNAS 

There are many types of linearly polarized microstrip patch antennas. In principle, 

the shape of patch is arbitrary, although square, rectangular, circular, ring, and elliptical 

designs are common, as shown in Figure 3, for linearly polarized microstrip antennas 

(MSAs). In Figure 3, typical locations of microstrip patch antenna feed points are 

indicated by an F (for “feed”). Although all of these antennas have very interesting 
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properties, the circularly polarized MSA designs used in this thesis have recently 

received increased attention and are used in many communication systems.  

 

 
Figure 3.   Basic Radiating Elements for Linearly Polarized Microstrip Antennas (From 

[Ref. 1]) 

 



 11

In general, circularly polarized microstrip antennas can be categorized into two 

types according to the number of feed points: namely single-fed and dual-fed antennas. 

The basic configurations of a dual-fed CP antenna are illustrated in Figure 4 (a). Figure 4 

(a) shows the antennas that are fed with an external polarizer, such as a 3 dB hybrid or 

offset feedline. In such an antenna system, the polarizer excites two linearly polarized 

orthogonal waves. The fields due to these orthogonal waves have equal amplitude and are 

90° out of phase. Therefore, an antenna excited by an external polarizer acts as a CP-

wave radiator. Both the impedance and axial ratio characteristics of dual-fed antennas are 

broader than those of single-fed antennas because the 3-dB hybrid is typically broadband. 

On the other hand, single-fed circularly polarized patches are very attractive, 

because they can be arrayed and fed like any linearly polarized patch.  The basic 

configurations of a single-fed antenna are shown in Figure 4 (b). Dual-fed CP patches 

require an additional circuit, which makes the overall size of the radiating element quite 

large, thus limiting the frequency performance of the array because of grating lobes. 

Single-fed CP patches have been extensively evaluated in the literature, where they are 

shown to be extremely narrowband antennas (1% bandwidth or less). The most fre-

quently used types of single-fed circularly polarized patches are the slotted patch, the 

notched patch and the “almost square” patch.  

In Figure 4 (b), ∆s represents the size of the perturbation segment as shown at the 

edges of single-fed circularly-polarized MSAs and S denotes the area of the antenna. The 

two orthogonal (“degenerate”) modes are separated into two modes by the effect of the 

perturbation segment ∆ s. The radiated fields caused by these two modes are perpen-

dicular to each other and have equal amplitude, but are 90° out of phase if the size of the 

perturbation segment for an antenna is adjusted to the optimum. Therefore, a single-fed 

antenna with an optimum perturbation segment acts as a CP-wave radiator without using 

an external polarizer. Due to the perturbation, the patch surface currents in the x and y 

directions are simultaneously affected, which makes the manufacturing tolerance critical 

for CP operation. To avoid the need for fine tolerance, in this study the simple CP design 

technique was applied to single probe-feed elliptical microstrip antennas.  In an elliptical 

microstrip patch antenna, the feed position is located along the 45º line between the long 
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and short axis of the elliptical patch, in order to simultaneously excite the two nearly 

degenerate modes corresponding to the long and short axes of the elliptical patch. The 

impedance matching is achieved by varying the feed position that is by moving the feed 

along the 45º line between the patch edge and the patch center. 

 
Figure 4.   Various Type of Circularly Polarized Microstrip Patch Antennas: (a) Dual-

Fed CP-Wave Patches; (b) Single Fed CP-Wave Patches  (From [Ref. 2]) 

 

This Chapter presented design options for circularly polarized microstrip patch 

antennas.  The particular design selected for the NPSAT1 is a single-feed microstrip 

elliptical patch antenna, because of its ease of fabrication and good electrical and mec-

hanical performance. By proper adjustment of the location of the single probe feed, right-
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hand or left-hand CP radiation can be obtained and the impedance can be matched to the 

50 Ω  reference. 

The following chapter presents the FDTD technique used in this project, and also 

describes the procedure used for determining the antenna dimensions needed to meet the 

NPSAT1 antenna requirements. 
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III. DESIGN OF THE ANTENNA AND COMPONENTS 

This Chapter examines several popular design techniques, including the FDTD 

(Finite Difference Time Domain) technique, used in this project. This chapter also 

describes the procedure for choosing the structures and the dimensions of the proposed 

antenna, such that antenna input impedances meets the VSWR requirement of the 

NPSAT1. 

A. DESIGN METHODOLOGY 

1. Design Techniques and Software 

The microstrip patch antenna has been analyzed using different techniques: 

• Transmission Line Model [Ref. 3]  

• Cavity Model [Ref. 4] 

• Methods of Moments [Ref. 5]  

• Finite-difference Time-domain Method [Ref. 6] 

In the transmission line model, the patch antenna is treated as two parallel 

radiating slots connected by a transmission line. The length of the patch antenna in the 

model is assumed larger than the actual physical length, to account for the fringing effect 

on the edges of the patch. Although the transmission-line model is easy to use, it has 

some inherent disadvantages. Specifically, it is only useful for patches of rectangular (or 

square) design and it inherently ignores details of field variations along the radiating 

edges. Employing the cavity model can overcome some of these disadvantages.  

Calculations based on the cavity model are the most useful for analyzing patch 

antennas. The cavity model treats the region between the two parallel conductor planes, 

consisting of a patch radiator and ground plane, as a cavity bounded by electric walls and 

a magnetic wall along the periphery of the patch. The antenna fields are assumed to be 

those of this cavity. Once the field distribution has been determined for the cavity, 

Huygens’ principle may be applied to the magnetic wall of the cavity, and then the 

approximate radiation field can be evaluated. This method is the most suitable for 
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analyzing patch antennas whose geometries and the corresponding wave equation for the 

cavity model can be solved by employing the method of separation of variables.  

Microstrip antennas are often used in conformal arrays because of their ability to 

conform to non-planar structures. Algorithms and software have been developed for 

analyzing different configurations of rectangular microstrip patch antenna arrays based 

on the Method of Moments approach. Input impedance, mutual coupling and radiation 

patterns are calculated and results are validated against measurements on an experimental 

model. While the Method of Moments is general, it requires considerable computational 

effort and yields few physical insights. The cavity model offers both simplicity and 

physical insight. [Ref. 7] 

This thesis uses FDTD technique, specifically the CST Microwave Studio FDTD 

software.  The FDTD method applies approximate differential operators to discretize 

Maxwell’s equations. The spatial and time derivatives in Maxwell’s equations are 

approximated by finite differences. The FDTD technique has the advantage of being able 

to analyze structures with arbitrary shapes and a wide variety of materials. Each volu-

metric cell in FDTD can have a permittivity and permeability independent of all other 

cells.  

With this approach, the incident plane wave must be introduced into the grid and 

propagated to the target in discrete steps. The scattered field must exit the grid without 

introducing artificial reflections. A perfectly matched layer (PML) boundary is 

commonly used at the grid boundary; large grids can be used so that the residual reflec-

tions from the grid boundary occur late in time and can be filtered out.  For stability, 

Courant conditions must be satisfied, linking the cell size (spatial disretization) and the 

discrete time steps. The FDTD is convenient for very broadband excitations, as solutions 

at multiple frequencies are obtained via a single time domain calculation. The Fourier 

Transform of time-sampled scattered waveforms provides the required parameters over a 

wide bandwidth.  

The CST Microwave Studio is a specialized tool for fast and accurate three-

dimensional electromagnetic simulation of high-frequency problems. It has electrostatics 
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and magnetostatic solvers, is fully parameterized, and possesses other key features, such 

as VBA compatibility, automatic macro recording, automatic multi-dimensional para-

meter sweeps and optimizers. Modeling with CST allows the use of an interactive mouse 

for data input, design capture, template assistance for specific applications, and fully 

parametric 3D modeling. A “history list” permits unlimited “undo” and “redo” functions 

for editing. The software also has advanced solid modeling features, including helices, 

blends, chamfers, extrusions, lofting and Boolean operations such as adding and sub-

tracting solid objects from existing structures. Additionally, it allows the import of 3D 

and planar structures and the parameterization of imported objects.  

The software provides automatic meshing and adaptive mesh refinement options. 

Simulation materials can be arranged in layers, whether they are isotropic or anisotropic, 

linear or non-linear, magnetic or non-magnetic. RF energy excitation sources include 

waveguide ports, plane wave incident fields, and discrete voltage and current sources. 

The post-processing includes the VSWR and Smith chart plots, port signal plots, polar 

radiation pattern plots, and 2D and 3D field plots.  The software can also calculate and 

plot the antenna axial ratio, which is important for circularly and elliptically polarized 

antennas. 

The first step in the antenna design processes is determining the criteria to use in 

selecting an optimal antenna. The first criterion is to achieve power transfer from the feed 

transmission line to the antenna.  This is accomplished by the matching the antenna input 

impedance to the characteristic impedance of the transmission line (in our case a coaxial 

cable with a 50 Ω  characteristic impedance). Ulaby [Ref. 8] defines these relations by the 

following equations: 

50 1
50 1

L

L

Z VSWR
Z VSWR

− −Γ = =
+ +

    (1) 

1
1

VSWR + Γ=
− Γ

       (2)    

Mismatch Loss (dB) 2
1010 log [1 ]= − − Γ .           (3) 
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In order to achieve the minimum acceptable VSWR of 2:1, the reflection 

coefficient must be Γ = 0.333, a corresponding load impedance of ZL = 100 ohms and 

transmission line impedance of Z0 = 50 Ω, where   

                                                 ( ) 150
1LZ Γ += − ⋅

Γ −
.                              (4)                         

Another major criterion in selecting an antenna is its overall efficiency, the pro-

duct of the input efficiency, radiation efficiency and beam efficiency, and is expressed by 

the relation: 

overall input rad beamη η η η= ⋅ ⋅ .    (5) 

Input efficiency defines the fraction of input power that effectively couples source 

power to the antenna and is computed using the formula: 

21 | |inputη = − Γ       (6) 

where Γ  is the reflection coefficient or S11 defined by: 

in ref

in ref

Z Z
Z Z

−
Γ =

+
.      (7) 

The CST Microwave Studio software designates the reflection coefficient as the 

S11 parameter. The radiation efficiency provides the portion of coupled power that the 

antenna radiates, and is expressed as a ratio of radiated power to input power. In equation 

form: 

rad rad
rad

in rad L

P R
P R R

η = =
+

       (8) 

where Rrad is the effective radiation resistance and RL is the antenna loss resistance.  

If the radiation resistance is small compared to the loss resistance, the antenna 

radiation efficiency is low. For electrically small antennas, the radiation resistance varies 

as approximately ( )2/L λ  for an electrically small loop, and approximately as 4/L λ  for 
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an electrically short dipole, where L is the antenna length and λ is the wavelength at the 

frequency of operation. 

 Beam efficiency provides the fraction of the total radiated power, at the desired 

polarization, into the desired target space volume. The total radiated power can be 

calculated as the product of the input power and the antenna average gain. The total 

power efficiency is frequency dependent for most antennas, but this dependence can be 

removed by averaging the overall efficiency over the operating frequency range.  The 

optimal antenna should have the highest mean efficiency with the least variance of the 

efficiency over the intended operational frequency range. 

2. NPSAT1 Relative Position and Coordinate System Used 

In order to define a solid 3D structure in any computer-aided-design software, 

operations are performed in a particular global and/or local co-ordinate system.  To 

clarify these, Table 1 designates the transverse axes of the three-dimensional drawings, 

and angles for the radiation pattern plots, relative to the NPSAT1 flight path. 

AXIS OR ANGLE INTERPRETATION 

X-axis Direction of the satellite flight 

Y-axis Perpendicular to the direction of the 

satellite flight 

Z-axis Direction pointing toward the earth 

Phi ( )Φ  = Satellite 

Yaw Angle 

 

Φ = 0o points to direction of satellite’s 

head or direction of flight 

Φ  = ± 90o points outward from 

satellite along the horizontal or X-Y plane. 

Theta ( )θ  = 

Satellite Angle of Radiation

θ = 0o points toward the ground 

θ  = 90o lies along the horizontal 

plane parallel to the ground 

θ  = 180o points toward the zenith or 

the sun at noon time 

Table 1.   NPSAT1 and Antenna Coordinate System  
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The CST Microwave Studio software uses the fixed global xyz-coordinate 

system. The farfield is represented by two components ( ),è öEE at spherical coordinates 

theta ( )θ  and phi ( )φ . The coordinates theta and phi relate to the Cartesian coordinate 

system as shown in Figure 5.  The angle phi is defined in the XY-plane, measured 

counter-clockwise from the X-axis, and the angle theta is denoted in the XZ-plane, 

measured clockwise from the Z-axis. Figure 6 presents the far-field polar plot with one 

spherical coordinate (theta) varying, and the other (phi) fixed.   

Figure 6 shows a cut plot of the 3D radiation pattern for 90Φ = .  The zenith 

direction coincides with 0θ =  axis (horizontal).  The counter-clockwise direction from 

the 0θ = axis is towards the positive x-axis, as indicated by the 90Φ = label, while the 

clockwise direction from the 0θ =  axis is towards the negative x-axis, as indicated by 

the 270Φ = label. 

  

 
Figure 5.   Coordinate System and Angles for 3D Radiation Pattern 
 

Theta 

Type 
Mon i tor 
Component 
Output 
Frequency 
Rad. effic. 
Tot. effic. 
Dir. 

Farfield 
Farfield_17G7 
fibs 
D i rect i v i ty 
1.7G755 
0.9919 
0.9934 
8.B?7 dBi 

-31.3 8.68 dBi 
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Figure 6.   Polar Radiation Pattern Coordinate System and Angles  
 

B. GENERAL DESCRIPTION OF THE ANTENNA ASSEMBLY 

The proposed antenna consists of a metallic “elliptical patch” on a dielectric 

(Teflon) substrate. Due to strict dimension restrictions the antenna must not exceed 10 

centimeters on the larger axis of the elliptical shape. The antenna has a band of operation 

from 1.5881 GHz to 1.7759 GHZ (187 MHz bandwidth) as a receive antenna, from 2.039 

GHz to 2.349 GHz (310 MHz bandwidth) as a transmit antenna, and a VSWR of 2:1 or 

lower. An overview of various references in the antenna area revealed no “ready-made” 

formulas for designing of an “elliptical microstrip patch” antenna with dimensional rest-

rictions and specific electrical performance requirements. 

A microstrip patch antenna is composed of three layers: a ground plane, a dielec-

tric substrate layer, and a patch. The patch is connected with an RF source through a 

coaxial line feed or a microstrip line feed. Since the patch is a perfect conductor, there is 

no tangential electric field on its surface. Furthermore, though the patch is open circuited 

at the edges, it is not a perfect open circuit since the dielectric substrate is very thin 

compared to the wavelength at the operating frequency. For the above reason, the 

fringing electric fields appear on the edges of the patch. Thus, the radiation aperture is 

larger than the physical aperture.  
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Techniques for feeding patches are summarized into three groups: direct feed 

coupled, electromagnetically coupled, or aperture coupled. Direct coupling methods are 

the oldest and the most popular, but only provide one degree of freedom for adjusting 

impedance. The microstrip feed-line and the coaxial probe are examples of direct feeds. 

The direct coaxial probe feed is simple to implement by extending the center conductor 

of the connector, attached to the ground plane, up (through the substrate) to the patch. 

The impedance can be adjusted by proper placement of the probe feed relative to the 

patch center. As the probe distance from the patch edge increases, the input impedance is, 

in general, reduced. A disadvantage of the probe feed is that it introduces an inductance 

that prevents the patch from becoming resonant, if the thickness of the substrate is 0.1 λ  

or greater. Also, probe radiation can be a source of cross polarization. [Ref. 9]  

Figures 7 and 8 illustrate a three-dimensional broadside model of the elliptical 

patch antennas proposed for the NPSAT1, installed on the top and the bottom sides of the 

satellite.   

 
Figure 7.   The Receive (left) and the Transmit Antennas (right) for the Top Side 
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Figure 8.   The Receive (left) and the Transmit (right) Antennas for the Bottom Side 

 

Figure 9 shows the 3D models of the transmit microstrip patch antenna and the 

receive microstrip patch, viewed from the YZ plane. Note that the simulations used a flat 

circular ground-plane corresponding to the metallic surface, visible in Figure 9, to which 

the antenna substrate is attached. 



 24

 

(a) The Model of the Receive Antenna, YZ-Plane 

 

(b) The Model of the Transmit Antenna, YZ-Plane  

 

Figure 9.   Transmit and Receive NPSAT1 Elliptical Microstrip Patch Antennas 

 

^ rt 
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Figure 10 and 11 show the specifications of the materials and their associated 

positions on the 3D antenna model, by using a wire frame drawing in CST Microwave 

Studio.  

 

 

 

Figure 10.   Wire Frame Model of the Receive Antenna 

 

 

 

 

 

Copper 
Post

Teflon 
Screw

Teflon 
Screw

Coaxial 
Cable

(50 ohm) 

Elliptical
Copper Patch 

Teflon 
Substrate

Aluminum
Ground Plane



 26

 

 

Figure 11.   Wire Frame Model of the Transmit Antenna 
 

Figures 12 and 13 present detailed views of the receive patch antenna and the 

transmit patch antenna. The physical dimensions of the two antennas are shown in 

Appendixes A and B, respectively. 
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Figure 12.   Detailed View of the Receive Antenna [From NPSAT1 Design Team.] 
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Figure 13.   Detailed View of the Transmit Antenna [From NPSAT1 Design Team.] 



 29

This Chapter examined some of the most popular computer-based design 

techniques, particularly the FDTD method implemented in the CST Microwave Studio 

software used in this study. The proposed microstrip patch antenna structures have been 

shown to satisfy the NPSAT1 requirements with respect to the available antenna “real 

estate” and mechanical stability. Chapter IV presents the electromagnetic simulation 

results, using CST Microwave Studio FDTD software to validate the electrical perfor-

mance of the two proposed patch antennas. 
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IV. ELECTROMAGNETIC SIMULATION RESULTS 

This Chapter presents the electromagnetic simulation results that were obtained 

by using CST Microwave Studio FDTD software to validate the electrical performance of 

the proposed microstrip patch antennas. CST Microwave Studio allows calculation and 

plotting different quantities in the time and frequency domains, such as VSWR vs. fre-

quency, port time-domain signals, the S-parameter plots, and so on. In addition to these 

one-dimensional (1D) plots, CST Microwave Studio post-processing also includes visual-

ization of many different 2D and three 3D quantities, such as electric and magnetic vector 

and scalar fields, power flow, and volumetric radiation patterns. 

A. VSWR AS A FUNCTION OF FREQUENCY 

1. VSWR for the Receive Antenna 

Figure 14 shows the VSWR for the elliptical microstrip receive patch antenna, for 

frequencies up to 5 GHz. 

 
Figure 14.   VSWR vs. Frequency for the Receive Antenna 
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Figure 14 also shows that the antenna operates well in two additional bands: from 

2.6 GHz to 2.85 GHz (250 MHz bandwidth), and from 3.84 GHz to 3.96 (122 MHz 

bandwidth), but these are bands outside the NPSAT1 antenna operational frequency 

range, and will be suppressed by the receiving bandpass filter which is a part of the 

receiver RF front-end. Figure 15 presents the detailed VSWR vs. frequency from 1.58 

GHz to 1.775 GHz, illustrating that a VSWR of less than 2.2:1 is achieved from 1.5881 

GHz to 1.7759 (187 MHz bandwidth).   

 
Figure 15.   VSWR for Frequencies between 1.58 GHz and 1.775 GHz  

 

2. VSWR for the Transmit Antenna 

Figure 16 shows the VSWR for the NPSAT1 elliptical microstrip patch transmit 

antenna, at frequencies up to 5 GHz.  Figure 17 presents the detailed VSWR vs. 

frequency from 2.038 GHz to 2.349 GHz.  A VSWR of less than 2.2:1 is achieved from 

2.039 GHz to 2.349 (310 MHz bandwidth) and from 3.34 GHz to 3.74 GHz (400 MHz 

bandwidth).  The second band is well outside of the operating frequency range of the 

NPSAT1 transmitter and has no adverse effects on the overall system operation. 
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Figure 16.   VSWR vs. Frequency for the Transmit Antenna 

 

 
Figure 17.   Detailed VSWR vs. Frequency between 2.038 GHz and 2.349 GHz  
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3. Port Signals 

Figure 18 shows the incoming and outgoing time-domain waveforms for the two-

port formed by the transmit antenna and the receive antenna coaxial feed ports. Port 1 and 

Port 2 refer to the feed ports of the receive antenna and the transmit antenna respectively. 

The incident wave amplitudes are denoted i1 and i2 and the output wave amplitudes for 

the two ports are denoted o11, o21, o12 and o22. The output wave amplitudes o21 and o12 are 

identical and appear as a single curve, because the two-port is reciprocal.  The antenna-

to-antenna coupling is very weak and thus the o21 and o12 curves appear to be right on the 

horizontal (zero amplitude) axis.  The patch antennas have strong resonances that lead to 

a slowly decaying output (reflected) signals.  

 
Figure 18.   Antenna Two-Port Reflection and Coupling Coefficients vs. Time 

 

4. S- Parameters 

One of the primary results from the antenna simulations are the S-parameter 

(magnitude and phase) plots versus frequency. The S-Parameters plot show resonance 

frequencies and operating bandwidths for the microstrip patch antennas analyzed. 
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a. S-Parameter Magnitude 

Figures 19 and 20 show the S-parameters (reflection coefficients and 

coupling coefficients) for the two-port formed by the transmit antenna (magenta curves) 

and the receive antenna (red curves).  Figure 19 shows the reflection and coupling 

coefficients on a linear scale, and Figure 20 shows the reflection and coupling co-

efficients on a logarithmic scale, for increased dynamic range. Note that the two antennas 

are coupled electromagnetically, albeit very weakly.  The frequencies of efficient antenna 

operation are indicated by the minima of the reflection coefficients.  So, we can identify 

the microstrip patch antenna resonant frequencies of 1.767 GHz for the receive antenna 

and 2.207 GHz for the transmit antenna, which closely matches the NPSAT1 require-

ments.  Figures 19 and 20 also show the mutual coupling coefficients represented by the 

blue and the green lines, which are identical because of the antenna two-port reciprocity.  

Note that the logarithmic scale in Figure 20 allows much better quantification of the very 

weak coupling between the two antennas. 

 
Figure 19.   Linear Scale Plots of Scattering Parameters vs. Frequency 
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Figure 20.   Logarithmic Scale Plots of Scattering Parameters (in dB) vs. Frequency 

 
b. Mutual Coupling S-Parameter Magnitude 

Figures 21 and 22 emphasize S-parameter plots for the mutual coupling 

between the transmit antenna and the receive antenna (S12 and S21). 

 
Figure 21.   Linear Scale Antenna Coupling Coefficient (S12 and S21) vs. Frequency 
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The mutual coupling is easier to quantify in Figure 22, where logarithmic 

scale is used for the magnitudes of S12 and S21.  As evident in this figure, the mutual 

coupling is quite low, lower than about −36 dB.  

 
Figure 22.   Logarithmic Scale Antenna Coupling Coefficient (S12 and S21 in dB) vs. 

Frequency 
 
c. S-Parameter Smith Charts 

A Smith chart shows complex values of the reflection coefficient S11, also 

referred to as Γ .  Since Smith charts are defined only for the input and output reflection 

parameters (S11, S22 etc.) only these values can be plotted. 

Shown in Figures 23 and 24 are the reflection coefficients Γ  for the two 

antennas as functions of frequency. The center of the Smith chart circle corresponds to 

Γ = 0 (perfect impedance match) and thus the plots of Γ  should pass as close as 

possible to the center of the Smith Chart at the intended frequency of operation. In our 

case the intended frequency of operation is 1.767 GHz for the receive antenna. As 

indicated in Figure 23 by the number 5 square, the match at this frequency is not ideal. 

However, the reflection coefficient is almost purely real and has a sufficiently low value. 

The point at number 5 is close to the horizontal axis through the center of circle, and the 

corresponding VSWR is about 1.86 (less than 2).  The intended frequency of operation is 
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2.207 GHz for the transmit antenna. As indicated in Figure 24 by the number 6 square, 

the match of this frequency is not ideal. The point at number 6 has a corresponding 

VSWR of 2, which still meets the requirement of the NPSAT1. 

 
Figure 23.   S11 Smith Chart for the Receive Antenna 

 

 
Figure 24.   S22 Smith Chart for the Transmit Antenna 
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B. FARFIELD SIMULATION RESULTS  

In addition to 1D results and plots, the CST Microwave Studio post-processing 

options also include 2D and 3D calculations and plotting.  The far-field calculation and 

plotting is one of the essential 3D MWS post-processing capabilities. 

The far-field calculations quantify the electromagnetic fields far away from their 

corresponding sources of electromagnetic waves. At a distance sufficiently large 

compared to the operating wavelength, the field components of a radiated or scattered 

field can be approximated as outgoing spherical waves. Higher order terms in the electro-

magnetic field decrease with distance as1/( )nr , where n = 2, 3…, and can be neglected.  

Therefore, only transverse electromagnetic field components exist far away from the 

radiation sources or “scatterers”, namely the theta and phi electric and magnetic field 

components, in a spherical coordinate system. 

The far-field components in MWS are derived from the calculated fields stored on 

the boundary of the calculation domain. Therefore, both radiated and scattered far-fields 

can be calculated and plotted.  Furthermore, either the magnitudes of the total electric/ 

magnetic field, or their individual (theta or phi) components can be calculated and 

plotted. 

1. Radiation Patterns for the Receive Antenna 

Besides the reflection and mutual coupling coefficients, the far-field radiation 

pattern is one of the most important parameters in antenna design. Figure 25 shows the 

3D (volumetric) directivity plot for the receive antenna.  The directivity is indicated by 

both the distance from the origin in the particular direction (defined by the angles of 

azimuth phi and the zenith angle theta) and the directivity surface color. Figures 26 and 

27 show the directivity for the left and right circularly polarized components of the 

receive antenna far-field.  Comparison between Figures 26 and 27 shows that the 

proposed receive patch antenna provides primarily left-hand circular polarization, as the 

directivity for the left-hand circular polarization is substantially higher than the direc-

tivity for the right-hand circular polarization.  Note that the maximum power is radiated 
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in a positive Z-direction and that the peak directivity has a value of 8.6 dBi that meets the 

NPSAT1 requirements. 

 
Figure 25.   3-D Plot of Directivity at 1767.55 MHz 

 
 

 
Figure 26.   3-D Plot of Left-Hand Circular Polarization at 1767.55 MHz 

Theta 
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Mo n i 10 r 
Component 
Output 
Frequenc>- 
Rad. effic. 
Tot. effic. 
Dir. 

Farfield 
Farfield_17E7 
Abs 
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Type = Farfield 
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Component = Left Polarisation 
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-32.9 7.05 dBi 
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Figure 27.   3-D Plot of Right-Hand Circular Polarization at 1767.55 MHz 

 

The polar plots present the far-field magnitudes with one coordinate varying and 

one fixed. In addition, in the lower left corner, Figures 28 and 29 show numerical values 

for some of the important antenna parameters: the main lobe direction, the 3-dB angular 

width and the side-lobe suppression ratio in dB. Figures 30 and 31 present the polar plots 

for the left-hand CP (LHCP) and right-hand CP (RHCP). Note that while LHCP has a 

main lobe magnitude level of 6.8 dBi, the RHCP has peak magnitude of only 3.7 dBi at 

the receiver operating frequency.  
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Figure 28.   Polar Plot of Directivity as a Function of Theta for Φ  = 0, at 1767.55 MHz 

 

 
Figure 29.   Polar Plot of Directivity as a Function of Theta for Φ  = 90, at 1767.55 MHz 
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Figure 30.   Polar Plot of LHCP at 1767.55 MHz  

 
 

 
Figure 31.   Polar Plot of RHCP at 1767.55 MHz 
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2. Simulation Results for the Transmit Antenna 

Similar to the results shown for the receive antenna, Figure 32 shows the 

volumetric plot of the directivity (as a function of the phi and theta angles) for the 

transmit antenna. Figures 33 and 34 show the LHCP and RHCP 3D-plots for the transmit 

antenna.  Figure 34 clearly indicates that the proposed receive patch antenna radiates 

primarily left-hand circular polarization.  The maximum power is radiated in the positive 

Z-direction.  The peak directivity of 8.8 dBi satisfies the NPSAT1 requirements. 

The polar plots present the far-field magnitudes with one coordinate varying and 

one fixed. In addition, in the lower left corner, Figures 35 and 36 alsonumerical values 

for some of the important antenna parameters: the main lobe direction, the 3-dB angular 

width and the side-lobe suppression ratio in dB.  

 
Figure 32.   3-D Plot of Directivity at 2207.3 MHz 

 

Type 
Han i tar 

Campanent 

Output 

Frequency 

Rad- effic. 

Tot- effic. 

Dir. 

Farfield 

Farfield_ZZe7. 

Abs 

D i rect i v i ty 
z.ze73 
e.99GG 
e.8fG8 
8.873 dBi 

-31.1 8.87 dBi 



 45

 
Figure 33.   3-D Plot for LHCP at 2207.3 MHz 

 
Figure 34.   3-D Plot for RHCP at 2207.3 MHz 

 

 

 

Type = Farfield 
Monitor = Farfield_2207.3 [21 

Component = Left Polarisation 
Output = Directivity 
Frequency = Z.Z973 

-31.4 8.63 dBi 

Type 

tlon i tor 

Component 

Output 

Frequency 

Farfield 

Farfield_ZZ07.3 [Z] 

R i sht Polar i sat i on 

D i rect i v i ty 

Z.Z073 
-37.5 2.51 dBi 



 46

 
Figure 35.   Polar Plot of Directivity vs. Theta ( Φ  = 0) at 2207.3 MHz 

 

 
Figure 36.   Polar Plot of Directivity vs. Theta ( Φ  = 90) at 2207.3 MHz 

 

Figures 37 and 38 also present the polar plots for the LHCP and RHCP 

components. Note that, while LHCP has a main lobe magnitude level of 8.6 dBi, the 

RHCP has peak magnitude of only 2.5 dBi at the transmitter operating frequency. 
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Figure 37.   Polar Plot of LHC at 2207.3 MHz 

 

 
Figure 38.   Polar Plot of RHC at 2207.3 MHz 
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The axial ratio quantifies the polarization quality for a circularly polarized anten-

na. Circular polarization is specified by its sense (left-hand or right-hand) and by its axial 

ratio. The axial ratio is the ratio of the maximum to minimum response to a linear signal 

of any orientation and is commonly expressed in dB. 

The relative amplitudes and phases of the radiated fields are primarily controlled 

by the feed point location on the elliptical patch. For good CP radiation, the two spatially 

orthogonal field components must be equal in amplitude and in phase quadrature. Tables 

2 and 3 show axial ratios in the direction of the z-axis 0θ =  acceptably close to 1.0        

(0 dB).  Table 4 shows the Microwave Studio solver statistics for the NPSAT1 receive 

microstrip patch antenna. 

AXIAL RATIO  è ÖE/E FOR the 

RECEIVE ANTENNA 

Directivity 

θE  [dBi] 

Directivity 

ΦE  [dBi] 

Axial Ratio 

è ÖE/E 

5.172 5.642 1.114 

Table 2.   Axial Ratio Calculation for the Receive Antenna    
 
 
 

AXIAL RATIO  è ÖE/E FOR the 

TRANSMIT ANTENNA 

Directivity 

θE  [dBi] 

Directivity 

ΦE  [dBi] 

Axial Ratio 

è ÖE/E 

6.124 6.737 1.15 

Table 3.   Axial Ratio Calculation for the Transmit Antenna            
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MWS SOLVER STATISTICS 

Number of Nodes 199,920 

Number of Time Steps 22,360 

Time Step Width 3.920810e-004 ns 

Time Step factor 0.564712 

Number of processors 1 

Mesh Generation Time 14 s 

Solver Time 11229 s 

Total Time 11243 s (3 h, 7 m, 23 s) 

Table 4.   Microwave Studio Solver Statistics  

 

This Chapter examined the electromagnetic simulation results, i.e., time-domain 

port signals, S-parameter plots and far-field radiation patterns obtained from CST 

Microwave Studio. The simulation results presented in this Chapter show that the 

proposed antennas satisfy the NPSAT1 VSWR requirements. The last chapter presents 

the conclusions and suggestions for further research.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

In this study, two circularly polarized low-profile microstrip elliptical patch 

antennas have been designed for use on NPSAT1 satellite.  The design is based on 

computational electromagnetics modeling and simulation using the CST Microwave 

Studio finite-difference time-domain software package. The proposed antennas operate at 

1.767 GHz and at 2.207 GHz for receive and transmit respectively, with a VSWR of less 

than or equal to 2:1 for 50 Ω reference impedance.  Circular polarization is achieved by 

the elliptical patch shape and the proper selection of the location of the single probe feed.   

The proposed designs are high-performance, easy to manufacture, circularly polarized 

antennas that meet the requirements for space use on the NPSAT1 satellite.  The 

maximum gain for the receive antenna is 8.6 dBi with side-lobe level of 11.6 dBi. The 

maximum gain for the transmit antenna is 8.8 dBi with side-lobe suppression of 15.7 dBi.  

Another NPS student, Ltjg. Ilhan Gokben of the Turkish Navy, will use the 

designs resulting from this thesis to prototype and test the antennas that will eventually be 

installed on the NPSAT1. 

B. RECOMMENDATIONS 

The optimization routine has a primary goal of minimizing the VSWR as well as 

optimizing the axial ratio. One of the variables was obviously the height of the Teflon 

“substrate.”  Future work could focus on further improving the VSWR, particularly at 

1.69 GHz, where the VSWR of 2.24:1 occurs for the receive antenna.  Using air as a 

dielectric would increase the bandwidth, and the antenna could be implemented without 

the limitations of dielectric substrates that are available only within a certain range of 

thickness.  The supporting mechanism may consist of a plastic cylinder connected by a 

plastic screw for securing the ground plane to the patch. The use of a thicker, low di-

electric constant substrate may also increase the antenna bandwidth, if needed for future 

designs. 
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Increasing the mesh density (i.e., reducing the cell size) and running the 

simulations for longer times would improve the results. Reducing the cell size would 

improve the geometric fidelity. The memory required for the simulation rises drama-

tically as the cell size decreases, so this approach has practical limits. Also, since the time 

step size is proportional to the cell size, more time steps are required for a model resolved 

with a finer mesh to reach the same point in simulated time. 

This effect can be somewhat reduced by tuning the source excitation. Running the 

patch model for a longer time would include even more of the patch response in the final 

solution and hence increase the accuracy of the computer predictions. 
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APPENDIX A.  PHYSICAL DIMENSIONS OF THE RECEIVE 
ANTENNA 

CYLINDRICAL ALUMINUM GROUND PLANE 

Diameter 32 cm 
Hole diameter (for the bottom 

antenna) 
12 cm 

Thickness 0.636 cm 
Short Axis (along X-direction) 7.293 cm 
Long   Axis (along Y-direction) 8.5085 cm 

Thickness 0.318 cm 
Short Axis (along X-direction) 7.293 cm 
Long   Axis (along Y-direction) 8.5085 cm 

Thickness 0.6 cm 
Diameter 0.5 cm 

Height 0.7 cm 
TEFLON MOUNTING SCREW 

Diameter 0.15 cm 
 
 
 

COAXIAL CABLE (50 Ω ) 

 Outer Radius Inner Radius Height 

Coax Center 
(PEC) 

0.056 cm 0 cm 1.868 cm 

Coax Dielectric 
(Teflon) 

0.184 cm 0.056 cm 1.318 cm 

Coax Shield 
(PEC) 

0.3125 cm 0.184 cm 1 cm 
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APPENDIX B.  PHYSICAL DIMENSIONS OF THE TRANSMIT 
ANTENNA 

CYLINDRICAL   ALUMINUM GROUND PLANE 

Diameter 32 cm 
Hole diameter (for the bottom antenna) 12 cm 

Thickness 0.636 cm 
Short Axis (along X-direction) 5.66 cm 

Long   Axis (along Y-direction) 6.6 cm 
Thickness 0.318 cm 

Short Axis (along X-direction) 5.66 cm 
Long   Axis (along Y-direction) 6.6 cm 

Thickness 0.6 cm 
Diameter 0.5 cm 
Height 0.7 cm 

TEFLON MOUNTING SCREW 

Diameter 0.15 cm 
 
 
 

COAXIAL CABLE (50 Ω ) 

 Outer Radius Inner Radius Height 

Coax Center 
Conductor 

(PEC) 

0.056 cm 0 cm 1.868 cm 

Coax Dielectric 
(Teflon) 

0.184 cm 0.056 cm 1.318 cm 

Coax Shield 
(PEC) 

0.3125 cm 0.184 cm 1 cm 
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APPENDIX C. ANTENNA VSWR VS. REFLECTION COEFFICIENT   

VSWR Γ  VSWR Γ  VSWR Γ  
1.01 0.00498 1.73 0.26740 5.50 0.69231 
1.02 0.00990 1.74 0.27007 5.60 0.69697 
1.03 0.01478 1.75 0.27273 5.70 0.70149 
1.04 0.01961 1.76 0.27536 5.80 0.70588 
1.05 0.02439 1.77 0.27798 5.90 0.71014 
1.06 0.02913 1.78 0.28058 6.00 0.71429 
1.07 0.03382 1.79 0.28315 6.10 0.71831 
1.08 0.03846 1.80 0.28571 6.20 0.72222 
1.09 0.04190 1.81 0.28826 6.19 0.72603 
1.10 0.04762 1.82 0.29078 6.40 0.72973 
1.11 0.05213 1.83 0.29329 6.50 0.73333 
1.12 0.05660 1.84 0.29577 6.60 0.73684 
1.13 0.06103 1.85 0.29825 6.70 0.74026 
1.14 0.06542 1.86 0.19000 6.80 0.74359 
1.15 0.06977 1.87 0.19003 6.90 0.74684 
1.16 0.07407 1.88 0.19005 7.00 0.75000 
1.17 0.07834 1.89 0.19007 7.10 0.75190 
1.18 0.08257 1.90 0.31034 7.20 0.75610 
1.19 0.08676 1.91 0.31271 7.19 0.75904 
1.20 0.09091 1.92 0.31507 7.40 0.76190 
1.21 0.09502 1.93 0.31741 7.50 0.76471 
1.22 0.09910 1.94 0.31973 7.60 0.76744 
1.23 0.10314 1.95 0.32203 7.70 0.77011 
1.24 0.10714 1.96 0.32432 7.80 0.77273 
1.25 0.11111 1.97 0.32660 7.90 0.77528 
1.26 0.11504 1.98 0.32886 8.00 0.77778 
1.27 0.11894 1.99 0.33110 8.10 0.78022 
1.28 0.12281 2.00 0.33333 8.20 0.78261 
1.29 0.12664 2.05 0.34426 8.19 0.78495 
1.31 0.13420 2.15 0.36508 8.50 0.78947 
1.32 0.13793 2.20 0.375 8.60 0.79167 
1.33 0.14163 2.25 0.38462 8.70 0.79381 
1.34 0.14519 2.1900 0.39394 8.80 0.79592 
1.35 0.14894 2.35 0.40299 8.90 0.79798 
1.36 0.15254 2.40 0.41176 9.00 0.80000 
1.37 0.15612 2.45 0.42029 9.10 0.80198 
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VSWR Γ  VSWR Γ  VSWR Γ  
1.38 0.15966 2.50 0.42857 9.20 0.80392 
1.39 0.16318 2.55 0.43662 9.19 0.80583 
1.40 0.16667 2.60 0.44444 9.40 0.80769 
1.41 0.17012 2.65 0.45205 9.50 0.80952 
1.42 0.17355 2.70 0.45946 9.60 0.81132 
1.43 0.17695 2.75 0.46667 9.70 0.8119 
1.44 0.18033 2.80 0.47368 9.80 0.81481 
1.45 0.18367 2.85 0.48052 9.90 0.81651 
1.46 0.18699 2.90 0.48718 10.0 0.81818 
1.47 0.19028 2.95 0.49367 11.0 0.83333 
1.48 0.19355 3.00 0.50000 12.0 0.84615 
1.49 0.19679 3.10 0.51220 13.0 0.85714 
1.50 0.20000 3.20 0.52381 14.0 0.86667 
1.51 0.20319 3.19 0.53488 15.0 0.87500 
1.52 0.20635 3.40 0.54545 16.0 0.88235 
1.53 0.20949 3.50 0.55556 17.0 0.88889 
1.54 0.21260 3.60 0.56522 18.0 0.89474 
1.55 0.21569 3.70 0.57447 19.0 0.90000 
1.56 0.21875 3.80 0.58333 20.0 0.90476 
1.57 0.22179 3.90 0.59184 25 0.93548 
1.58 0.22481 4.00 0.60000 40.0 0.95122 
1.59 0.22780 4.10 0.60784 50.0 0.96078 
1.60 0.219 4.20 0.61538 60.0 0.96721 
1.61 0.23372 4.19 0.62264 70.0 0.97183 
1.62 0.23664 4.40 0.62963 80.0 0.97531 
1.63 0.23954 4.50 0.63636 90.0 0.97802 
1.64 0.24242 4.60 0.64286 100 0.98020 
1.65 0.24528 4.70 0.64912 200 0.99005 
1.66 0.24812 4.80 0.65517 300 0.99336 
1.67 0.25094 4.90 0.66102 400 0.99501 
1.68 0.25373 5.00 0.66667 500 0.99601 
1.69 0.25651 5.10 0.67213 600 0.99667 
1.70 0.25926 5.20 0.67742 700 0.99715 
1.71 0.26199 5.1900 0.68254 800 0.99750 
1.72 0.26471 5.40 0.68750 900 0.99778 

    1000 0.99800 
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